The effects of mesenchymal stem cells transplantation on A1 neurotoxic reactive astrocyte and demyelination in the cuprizone model

AbstractMultiple sclerosis (MS), which is an autoimmune disease, is characterized by symptoms such as demyelination, axonal damage, and astrogliosis. As the most abundant type of glial cells, astrocytes play an important role in MS pathogenesis. Mesenchymal stem cells (MSCs) are a subset of stromal cells that have the potential for migration, immune-modulation, differentiation, remyelination, and neuroregeneration. Therefore, the present study evaluates the effects of MSC transplantation on A1 reactive astrocytes and the remyelination process in the cuprizone mouse model. The study used 30 male C57BL/6 mice, which were randomly distributed into three subgroups (n  = 10), i.e., control, cuprizone, and transplanted MSCs groups. In order to generate a chronic demyelination model, the mice in the cuprizone group received food mixed with 0.2% cuprizone powder for 12 weeks. Then, 2 μl of DMEM containing approximately 3 × 105 DiI labeled cells was injected with a 4-min interval into the right lateral ventricle using a 10 ‐μl Hamilton syringe. After 2 weeks of cell transplantation, we used the rotarod test to evaluate the behavioral deficits, while the remyelination process was assessed by transmission electron microscopy (TEM) and Luxol Fast Blue (LFB) staining. We assessed the population of A1 astrocytes and oli godendrocytes using specific markers, such as C3, GFAP, and Olig2, using the immunefleurocent method. The pro-inflammatory and trophic factors were assessed ...
Source: Journal of Molecular Histology - Category: Laboratory Medicine Source Type: research