Salidroside-pretreated mesenchymal stem cells contribute to neuroprotection in cerebral ischemic injury in vitro and in vivo

This study aimed to investigate whether salidroside could improve MSC survival under hypoxic-ischemic conditions and, subsequently, alleviate cerebral ischemic injury in a rat model. MSCs were pretreated by salidroside under hypoxic-ischemic conditions. The cell proliferation, migratory capacity, and apoptosis were evaluated by means of Cell Counting Kit-8, transwell assay, and flow cytometry. MSCs pretreated with salidroside were transplanted into the rats subsequent to middle cerebral artery occlusion. The grip strength, 2,3,5-triphenyltetrazolium chloride, and hematoxylin –eosin staining were used to analyze the therapeutic efficiency and pathological changes. The mature neuron marker NeuN and astrocyte marker GFAP in the focal area were detected by immunofluorescence. These results indicated that salidroside promoted the proliferation, migration and reduced apopto sis of MSCs under hypoxic-ischemic conditions. In vivo experiments revealed that transplantation of salidroside-pretreated MSCs strengthened the therapeutic efficiency by enhancing neurogenesis and inhibiting neuroinflammation in the hippocampal CA1 area after ischemia. Our results suggest that pret reatment with salidroside could be an effective strategy to enhance the cell survival rate and the therapeutic effect of MSCs in treating cerebral ischemic injury.
Source: Journal of Molecular Histology - Category: Laboratory Medicine Source Type: research