Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs).

Biomolecular condensates in cell biology and virology: phase-separated membraneless organelles (MLOs). Anal Biochem. 2020 Mar 16;:113691 Authors: Sehgal PB, Westley J, Lerea KM, DiSenso-Browne S, Etlinger JD Abstract Membraneless organelles (MLOs) in the cytoplasm and nucleus in the form of 2D and 3D phase-separated biomolecular condensates are increasingly viewed as critical in regulating diverse cellular functions. These functions include cell signaling, immune synapse function, nuclear transcription, RNA splicing and processing, mRNA storage and translation, virus replication and maturation, antiviral mechanisms, DNA sensing, synaptic transmission, protein turnover and mitosis. Components comprising MLOs often associate with low affinity; thus cell integrity can be critical to the maintenance of the full complement of respective MLO components. Phase-separated condensates are typically metastable (shape-changing) and can undergo dramatic, rapid and reversible assembly and disassembly in response to cell signaling events, cell stress, during mitosis, and after changes in cytoplasmic "crowding" (as observed with condensates of the human myxovirus resistance protein MxA). Increasing evidence suggests that neuron-specific aberrations in phase-separation properties of RNA-binding proteins (e.g. FUS and TDP43) and others (such as the microtubule-binding protein tau) contribute to the development of degenerative neurological diseases (e....
Source: Analytical Biochemistry - Category: Biochemistry Authors: Tags: Anal Biochem Source Type: research