Screening for EGFR and KRAS mutations in non-small cell lung carcinomas using DNA extraction by hydrothermal pressure coupled with PCR-based direct sequencing.

This study assessed the feasibility of using this method to screen for exons 18-21 of EGFR and exon 2 of KRAS gene mutations in surgical resection and core needle biopsy specimens from 251 NSCLC patients. EGFR mutations were identified in 140 (55.8%) NSCLC patients (118 in adenocarcinoma, 11 in squamous cell carcinoma, 7 in adenocarcinoma and 4 in NSCLC-not otherwise specified), including four novel substitutions (L718M, A743V, L815P, V819E). EGFR mutations were frequently present in female patients (72 of 113, 63.7%) and NSCLC with adenocarcinoma component (125/204, 61.3%) with statistical significance. Twenty-one patients had multiple mutations at different exons of EGFR, in which seventeen patients had deletions in exon 19. KRAS mutations were found in 18 (7.2%) patients (15 in adenocarcinoma, 2 in squamous cell carcinoma and one in NSCLC-not otherwise specified), including an uncommon substitution G13C. Deparaffinization and lysis by hydrothermal pressure, coupled with purification and PCR-based sequencing, provides a robust screening approach for EGFR and KRAS mutation analysis of FFPE tissues from either surgical resection or core needle biopsy in clinical personalized management of lung cancer. PMID: 24040454 [PubMed - in process]
Source: International Journal of Clinical and Experimental Pathology - Category: Pathology Authors: Tags: Int J Clin Exp Pathol Source Type: research