1,3-Butadiene metabolite 1,2,3,4 diepoxybutane induces DNA adducts and micronuclei but not t(9;22) translocations in human cells.

1,3-Butadiene metabolite 1,2,3,4 diepoxybutane induces DNA adducts and micronuclei but not t(9;22) translocations in human cells. Chem Biol Interact. 2019 Aug 15;:108797 Authors: Walker VE, Degner A, Carter EW, Nicklas JA, Walker DM, Tretyakova N, Albertini RJ Abstract Epidemiological studies of 1,3-butadiene (BD) exposures have reported a possible association with chronic myelogenous leukemia (CML), which is defined by the presence of the t(9;22) translocation (Philadelphia chromosome) creating an oncogenic BCR-ABL fusion gene. Butadiene diepoxide (DEB), the most mutagenic of three epoxides resulting from BD, forms DNA-DNA crosslink adducts that can lead to DNA double-strand breaks (DSBs). Thus, a study was designed to determine if (±)-DEB exposure of HL60 cells, a promyelocytic leukemia cell line lacking the Philadelphia chromosome, can produce t(9;22) translocations. In HL60 cells exposed for 3 h to 0-10 μM DEB, overlapping dose-response curves suggested a direct relationship between 1,4-bis-(guan-7-yl)-2,3-butanediol crosslink adduct formation (R = 0.977, P = 0.03) and cytotoxicity (R = 0.961, P = 0.002). Experiments to define the relationships between cytotoxicity and the induction of micronuclei (MN), a dosimeter of DNA DSBs, showed that 24 h exposures of HL60 cells to 0-5.0 μM DEB caused significant positive correlations between the concentration and (i) the degree of cytotoxicity (R = 0.99...
Source: Chemico-Biological Interactions - Category: Molecular Biology Authors: Tags: Chem Biol Interact Source Type: research