An investigation of the acute central nervous system effects of n-decane

Publication date: Available online 9 July 2019Source: Regulatory Toxicology and PharmacologyAuthor(s): Richard H. McKee, Craig S. Nessel, Juan-Carlos CarrilloAbstractAcute central nervous system (CNS) depression is the most sensitive toxicological effect associated with aliphatic hydrocarbon exposure. No observed effect levels for the CNS effects of aliphatic constituents decrease with increasing carbon number to C10 (Lammers et al., 2011; McKee et al., 2011), whereas constituents with carbon numbers > C10 do not produce CNS effects at maximally attainable vapor concentrations (Nilsen et al., 1988). Accordingly, as n-decane appeared to be the “worst case” for acute CNS effects among aliphatic hydrocarbon solvent constituents, experimental studies were conducted to more precisely define the no effect level. Rats were exposed for 8 h to n-decane, either constantly at 3000 mg/m3 or at higher levels using a discontinuous exposure protocol to assess the influence of fluctuating exposures. Neurobehavioral testing methods including visual discrimination performance and motor activity were used to assess performance, and concentrations of n-decane in blood and brain were measured to obtain pharmacokinetic data. No statistically significant differences were observed in the neurobehavioral tests, establishing 3000 mg/m3 as the no effect level for CNS effects in rats. These data support the recommended guidance value of 1050 mg/m3 for C9–C15 aliphatic hydrocarbons for ...
Source: Regulatory Toxicology and Pharmacology - Category: Toxicology Source Type: research