Central changes in the Kv10.2 potassium channel in stress-induced hypertension rats

Ion channels play as a pivotal role in hypertension in the processes of maintenance of vascular tone and sympathetic excitement of hypertension. The Kv10.2 channel (encoded by the Kcnh5 gene) belongs to the EAG voltage-gated superfamily. It is distributed widely in the brain, such as the hippocampus, the cortex, and the olfactory bulb. To date, the expression of Kv10.2 in central nervous system nuclei that regulates cardiovascular function and its inter-relationship with hypertension are still unclear. Here, electric foot-shock stressors with noise were used to establish the stress-induced hypertensive (SIH) rat model. The expression of Kv10.2 in the rostral ventrolateral medulla, the nucleus tractus solitarius, and the paraventricular nucleus (PVN) was examined by immunohistochemical staining and western blots. The following results were obtained: (a) the expression level of Kv10.2 was increased obviously in the paraventricular nucleus of SIH rats, whereas no significant difference was found in the rostral ventrolateral medulla and the nucleus tractus solitarius. (b) Kv10.2 was located in neurons. (c) Vesicular glutamate transporter 1 as a protein mark of glutamate neurons was increased in the paraventricular nucleus of the SIH group. (d) The expression of vesicular glutamate transporter 1 protein in neurons was significantly decreased when the Kcnh5 gene was knocked down by small interfering RNA in vitro. These findings indicate that the changes in Kv10.2 may be related to ...
Source: NeuroReport - Category: Neurology Tags: CLINICAL NEUROSCIENCE Source Type: research