TRB3 stimulates SIRT1 degradation and induces insulin resistance by lipotoxicity via COP1.

In this study, we explored the role of TRB3-COP1-SIRT1 in lipotoxicity leading to insulin resistance in hepatocytes. High fat diet (HFD)-fed mice and hepG2 cells stimulated with palmitate and were utilized as models of lipid metabolism disorders. We analyzed the interactions of SIRT1 and COP1 with each other and with TRB3 using co-immunoprecipitation, western blotting. SIRT1 ubiquitination was also explored. Animal and cell experiments showed that lipotoxicity induced SIRT1 down-regulation at the protein level without altering the mRNA level, whereas, lipotoxicity led to up-regulation of TRB3 and COP1 at both the gene and protein levels. Mechanistic analysis indicated that COP1 functioned as an E3 Ub-ligase of SIRT1, responsible for its proteasomal degradation under lipotoxic conditions. TRB3 recruited COP1 to SIRT1 to promote its ubiquitination. Our data indicated for the first time that TRB3-COP1-SIRT1 pathway played an important role in lipotoxicity leading to insulin resistance in hepatocytes, and suggested that COP1 could be a potential therapeutic choice for the treatment of diabetes mellitus, with lipotoxicity being the important pathomechanism. PMID: 31125554 [PubMed - as supplied by publisher]
Source: Experimental Cell Research - Category: Cytology Authors: Tags: Exp Cell Res Source Type: research