Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature.

Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem Res. 2019 Apr 09;: Authors: Shalata A, Edery M, Habib C, Genizi J, Mahroum M, Khalaily L, Assaf N, Segal I, Abed El Rahim H, Shapira H, Urian D, Tzur S, Douiev L, Saada A Abstract Primary deficiency of coenzyme Q10 (CoQ10 ubiquinone), is classified as a mitochondrial respiratory chain disorder with phenotypic variability. The clinical manifestation may involve one or multiple tissue with variable severity and presentation may range from infancy to late onset. ADCK3 gene mutations are responsible for the most frequent form of hereditary CoQ10 deficiency (Q10 deficiency-4 OMIM #612016) which is mainly associated with autosomal recessive spinocerebellar ataxia (ARCA2, SCAR9). Here we provide the clinical, biochemical and genetic investigation for unrelated three nuclear families presenting an autosomal form of Spino-Cerebellar Ataxia due to novel mutations in the ADCK3 gene. Using next generation sequence technology we identified a homozygous Gln343Ter mutation in one family with severe, early onset of the disease and compound heterozygous mutations of Gln343Ter and Ser608Phe in two other families with variable manifestations. Biochemical investigation in fibroblasts showed decreased activity of the CoQ dependent mitochondrial respiratory chain enzyme succinate cytochrome c reductase (complex II + III). Exogenous CoQ...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research