Synthesis, characterization and biological evaluation of Co(III) complexes with quinolone drugs.

Synthesis, characterization and biological evaluation of Co(III) complexes with quinolone drugs. J Inorg Biochem. 2019 Jan 21;193:94-105 Authors: Kozsup M, Farkas E, Bényei AC, Kasparkova J, Crlikova H, Brabec V, Buglyó P Abstract Nine novel cobalt(III) ternary complexes bearing 4N donor ligands (tris(2-aminoethyl)amine (tren) or tris(2-methylpyridyl)amine (tpa)) and (fluoro)quinolones (quinH) with antibacterial and potential antitumor activity have been synthesized, characterized and screened in various biological assays. The molecular structures of [Co(tpa)(nal)](PF6)2 (3) and [Co(tpa)(nor)(Co(tpa)(norH)](PF6)3(Cl)2∙5MeOH (8) (nal = deprotonated form of nalidixic acid, norH = norfloxacin) with the expected octahedral geometry and (O,O) coordination of the quinolone ligands are also reported. Cyclic voltammetric studies revealed that the 4N donor ligands have much higher effect on the reduction potential of these ternary complexes than the quinolones. Due to the π-back-bonding interaction of the metal ion with the pyridyl-N atoms, the tpa containing compounds demonstrated lower stability and were easier to get reduced in a reversible manner. This character makes them unlikely candidates for development of effective, highly selective hypoxia-activated pro-drug complexes, but this goal might be achieved by substitution of tpa by tren. [Co(tren)(cip)](PF6)2 (4) and [Co(tpa)(cip)](PF6)2 (5) (cip = deprotonated form of c...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research