A New Model for Congenital Vestibular Disorders

AbstractMany developmental disorders of the inner ear are manifested clinically as delayed motor development and challenges in maintaining posture and balance, indicating involvement of central vestibular circuits. How the vestibular circuitry is rewired in pediatric cases is poorly understood due to lack of a suitable animal model. Based on this, our lab designed and validated a chick embryo model to study vestibular development in congenital vestibular disorders. The developing inner ear or “otocyst” on the right side of 2-day-old chick embryos (E2) was surgically rotated 180° in the anterior–posterior axis, forming the “anterior–posterior axis rotated otocyst chick” or ARO chick. The ARO chick has areproducible pathology of a sac with truncated or missing semicircular canals. A sac is the most common inner ear defect found in children with congenital vestibular disorders. In E13 ARO chicks, the sac contained all three cristae and maculae utriculi and sacculi, but the superior crista and macula utriculi were shortened in anterior –posterior extent. Also, the number of principal cells of the tangential vestibular nucleus, a major avian vestibular nucleus, was decreased 66 % on the rotated side. After hatching, no difference was detected between ARO and normal chicks in their righting reflex times. However, unlike normal ch icks, ARO hatchlings had a constant, right head tilt, and after performing the righting reflex, ARO chicks stumbled and walked with a wide...
Source: JARO - Journal of the Association for Research in Otolaryngology - Category: ENT & OMF Source Type: research