A new pyrrole based small molecule from Tinospora cordifolia induces apoptosis in MDA-MB-231 breast cancer cells via ROS mediated mitochondrial damage and restoration of p53 activity

In this study, we investigated the effect of the natural compound, Bis(2- ethyl hexyl) 1H-pyrrole-3,4-dicarboxylate (TCCP), purified from Tinospora cordifolia on MDA-MB-231, a TNBC cell line. The pro-apoptotic nature of TCCP on MDA-MB-231 was determined by assessing various apoptotic markers. ROS generation, intracellular calcium, mitochondrial membrane potential (ΔΨm), MPTP, cardiolipin peroxidation and caspase activity were determined fluorometrically. BAX, BCL-2, cytochrome c, caspases, and p53 protein expressions were determined by immunoblotting. Further, the effect of TCCP on DNA and cell death was determined by DNA fragmentation assay, annexin-V staining, and cell cycle analysis. TCCP treatment caused endogenous ROS generation, increase in intracellular calcium and phosphorylation of p53 in a concentration-dependent manner, which was reverted upon pre-treatment with pifithrin-μ. This led to the downstream altered expression of Bcl-2 and Bax proteins, mitochondrial membrane depolarization, MPTP, and cardiolipin peroxidation. TCCP induced cytochrome c release into the cytosol, caspase activation, ultimately resulting in DNA fragmentation. Further, induction of apoptosis and morphological alterations were evident from the phosphatidylserine externalization and increase in sub G1 population. The in vivo Ehrlich ascites tumor (EAT) mouse study revealed the effectiveness of TCCP in reducing the tumor burden and resulted in a ∼2 fold increase in mice survival with minima...
Source: Chemico Biological Interactions - Category: Biochemistry Source Type: research