Biophysical and photobiological basics of water-filtered infrared-A hyperthermia of superficial tumors.

Biophysical and photobiological basics of water-filtered infrared-A hyperthermia of superficial tumors. Int J Hyperthermia. 2018 May 10;:1-11 Authors: Vaupel P, Piazena H, Müller W, Notter M Abstract Thermography-controlled, water-filtered infrared-A (wIRA) is a novel, effective and approved heating technique listed in the ESHO quality assurance guidelines for superficial hyperthermia clinical trials (2017). In order to assess the special features and the potential of wIRA-hyperthermia (wIRA-HT), detailed and updated information about its physical and photobiological background is presented. wIRA allows for (a) application of high irradiances without skin pain and acute grade 2-4 skin toxicities, (b) prolonged, therapeutically relevant exposure times using high irradiances (150-200 mW/cm2) and (c) faster and deeper heat extension within tissues. The deeper radiative penetration depth is mainly caused by forward Mie-scattering. At skin surface temperatures of 42-43 °C, the effective heating depth is 15 mm (T ≥ 40 °C) and 20 mm (T ≥ 39.5 °C). Advantages of wIRA include its contact-free energy input, easy power steering by a feed-back loop, extendable treatment fields, real-time and noninvasive surface temperature monitoring with observation of dynamic changes during HT, and - if necessary - rapid protection of temperature-sensitive structures. wIRA makes the compliant heating of ulcerated and/or bleeding tum...
Source: International Journal of Hyperthermia - Category: Internal Medicine Tags: Int J Hyperthermia Source Type: research