PGC-1 α sparks the fire of neuroprotection against neurodegenerative disorders.

PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev. 2018 Mar 23;: Authors: Lv J, Jiang S, Yang Z, Hu W, Wang Z, Li T, Yang Y Abstract Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target. PMID: 29580918 [PubMed - as supplied by publisher]
Source: Ageing Research Reviews - Category: Genetics & Stem Cells Authors: Tags: Ageing Res Rev Source Type: research

Related Links:

Abstract Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson's disease, Alzheimer's disease, Hunt...
Source: Biometals - Category: Biochemistry Authors: Tags: Biometals Source Type: research
Publication date: May 2018 Source:Neurochemistry International, Volume 115 Author(s): Zhihui Zhu, Georg Reiser Small heat shock proteins (sHsps) are a group of proteins with molecular mass between 12 and 43 kDa. Currently, 11 members of this family have been classified, namely HspB1 to HspB11. HspB1, HspB2, HspB5, HspB6, HspB7, and HspB8, which are expressed in brain have been observed to be related to the pathology of neurodegenerative diseases, including Parkinson's, Alzheimer's, Alexander's disease, multiple sclerosis, and human immunodeficiency virus-associated dementia. Specifically, sHsps interact with misfolding ...
Source: Neurochemistry International - Category: Neuroscience Source Type: research
This study cohort is a healthy subset of the EpiPath cohort, excluding all participants with acute or chronic diseases. With a mediation analysis we examined whether CMV titers may account for immunosenescence observed in ELA. In this study, we have shown that ELA is associated with higher levels of T cell senescence in healthy participants. Not only did we find a higher number of senescent cells (CD57+), these cells also expressed higher levels of CD57, a cell surface marker for senescence, and were more cytotoxic in ELA compared to controls. Control participants with high CMV titers showed a higher number of senes...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Hormesis is a near ubiquitous phenomenon in living organisms and their component parts: a little damage, a short or mild exposure to damaging circumstances, can result in a net benefit to health and longevity. Cells respond to damage or stress by increasing their self-repair efforts for some period of time, maintaining their function more effectively than would otherwise have been the case. At the high level, the outcomes of hormesis have been measured for a wide variety of stresses and systems, from individual cells to entire organisms. At the low level of specific biochemical processes and interaction of components insid...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs
Publication date: October 2017 Source:Neurochemistry International, Volume 109 Author(s): Illari Salvatori, Cristiana Valle, Alberto Ferri, Maria Teresa Carrì The NAD+-dependent deacetylase protein Sirtuin 3 (SIRT3) is emerging among the factors playing a key role in the regulation of mitochondrial function and in the prevention of oxidative stress. This deacetylase activates protein substrates directly involved in the production and detoxification of ROS, such as superoxide dismutase 2 and catalase, but also enzymes in the lipid beta-oxidation pathway. In this paper we review existing evidence on the role of SIRT3...
Source: Neurochemistry International - Category: Neuroscience Source Type: research
This study builds on an alternative hypothesis. First proposed in 2004, the "mitochondrial cascade hypothesis" posits that changes in the cellular powerhouses, not amyloid buildup, are what cause neurons to die. Like most human cells, neurons rely on mitochondria to stay healthy. But unlike other cells, most neurons stop dividing after birth, so they can't be replaced if they're damaged. In Alzheimer's patients, the thinking goes, the mitochondria in neurons stop working properly. As a result they are unable to generate as much energy for neurons, which starve and die with no way to replenish them. But how mitoch...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
Abstract Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological ...
Source: CNS Neuroscience and Therapeutics - Category: Neuroscience Authors: Tags: CNS Neurosci Ther Source Type: research
Authors: Wu Q, Luo CL, Tao LY Abstract As the main source of energy (celluar ATP) in eukaryotic cells, mitochondria are involved in cellular physiology and pathology. The balance of mitochondrial dynamic, fission and fusion regulated by quality control mechanisms, provides a guarantee for maintaining mitochondrial function, even celluar function. Worn out mitochondria would be removed through mitophagy which is regulated by autophagy related proteins and mitochondrial membrane proteins. Drp1, dynamic-related protein 1, is regarded as one of the most important proteins to evaluate mitochondrial fission mediating mit...
Source: Histology and Histopathology - Category: Cytology Tags: Histol Histopathol Source Type: research
Authors: Islam MT Abstract Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to th...
Source: Neurological Research - Category: Neurology Tags: Neurol Res Source Type: research
This study shows for the first time that increasing arterial stiffness is detrimental to the brain, and that increasing stiffness and brain injury begin in early middle life, before we commonly think of prevalent diseases such as atherosclerosis, coronary artery disease or stroke having an impact." The study also noted that elevated arterial stiffness is the earliest manifestation of systolic hypertension. The large study involved approximately 1,900 diverse participants in the Framingham Heart Study, who underwent brain magnetic resonance imaging (MRI), as well as arterial tonometry. The tests measured the force o...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: ALS | Alzheimer's | Antidoxidants | Brain | Genetics | Huntington's Disease | Mitochondrial Disease | Neurology | Parkinson's Disease