Nrf2 Signaling Pathway Mediates the Antioxidative Effects of Taurine Against Corticosterone-Induced Cell Death in HUMAN SK-N-SH Cells.

Nrf2 Signaling Pathway Mediates the Antioxidative Effects of Taurine Against Corticosterone-Induced Cell Death in HUMAN SK-N-SH Cells. Neurochem Res. 2017 Oct 23;: Authors: Sun Q, Jia N, Yang J, Chen G Abstract Substantial evidence has shown that elevated circulating corticosteroids or chronic stress contributes to neuronal cell death, cognitive and mental disorders. However, the underlying mechanism is still unclear. Taurine is considered to protect neuronal cells from apoptotic cell death in neurodegenerative diseases and neuropsychiatric disorders. In the present study, the protective effects of taurine against corticosterone (CORT)-induced oxidative damage in SK-N-SH neuronal cells were investigated. The results showed that CORT significantly induced cell death, which was blocked by pretreatment with taurine. Similarly, pretreatment with taurine suppressed CORT-induced apoptotic cell death decreasing the levels of intracellular reactive oxygen species and improving mitochondrial function. Pretreatment with taurine increased the expression of phosphorylated extracellular regulated protein kinases (ERK) as well as the nuclear translocation of nuclear factor (erythroid 2-derived)-like 2 (Nrf2) in the CORT rich environment. Furthermore, administration of the ERK inhibitor U0126 or transient (siRNA) silencing of Nrf2 blocked the protective effects of taurine on cell viability and expression levels of Nrf2 and heme oxygenase-1 (HO-1) i...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research