Metformin inhibits nerve growth factor (NGF)-induced sympathetic neuron differentiation through p35/CDK5 inhibition

In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the down-regulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the pre-synaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. Additionally, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.PMID:38682237 | DOI:10.1152/ajpcell.00121.2024
Source: Am J Physiol Cell Ph... - Category: Cytology Authors: Source Type: research