Synergistic antimicrobial action of nanocellulose, nanoselenium, and nanocomposite against pathogenic microorganisms

In this study, nanocellulose was extracted from algae, biomolecule substances synthesized selenium nanoparticles, and a simple nanocomposite of nanocellulose and nanoselenium was elaborated using nanocellulose as a reducing agent under hydrothermal conditions. These nanocomposite materials have markedly improved properties at low concentrations. Our obtained polymers were characterized using techniques including Fourier-transform infrared spectroscopy, X-ray powder diffraction, Thermo gravimetric analysis (TGA), Scanning electron microscopic (SEM), Energy Dispersive X-ray analysis (EDX), Transmission electron microscopic (TEM), Zeta Potential and Dynamic Light Scattering (DLS). The size of nanocellulose, nanoselenium, and nanocomposite ranged from 35 to 85 nm. Antimicrobial investigation of the prepared nanopolymers was tested against Gram-negative bacteria such as Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538, Gram-positive bacteria such as Escherichia coli ATCC8739 and Pseudomonas aeruginosa ATCC 90274 and fungi such as Candida albicans ATCC 10221 besides Aspergillus fumigatus. In antibacterial action tests, nanoselenium showed significant efficacy against Bacillus subtilis with a 12 mm zone of inhibition, while the nanocomposite eclipsed all microorganisms. Nanocellulose and the nanocomposite were potent against Staphylococcus aureus (14 mm and 16 mm zones of inhibition, respectively). The nanocomposite showed potential against Escherichia coli and Pseudo...
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research