Integrating Multi-omics Data for Alzheimer ’s Disease to Explore Its Biomarkers Via the Hypergraph-Regularized Joint Deep Semi-Non-Negative Matrix Factorization Algorithm

AbstractAlzheimer ’s disease (AD) is a progressive and irreversible neurodegenerative disorder. Its etiology may be associated with genetic, environmental, and lifestyle factors. With the advancement of technology, the integration of genomics, transcriptomics, and imaging data related to AD allows simultaneous expl oration of molecular information at different levels and their interaction within the organism. This paper proposes a hypergraph-regularized joint deep semi-non-negative matrix factorization (HR-JDSNMF) algorithm to integrate positron emission tomography (PET), single-nucleotide polymorphism (SNP), and gene expression data for AD. The method employs matrix factorization techniques to nonlinearly decompose the original data at multiple layers, extracting deep features from different omics data, and utilizes hypergraph mining to uncover high-order correlations among the three types of data. Expe rimental results demonstrate that this approach outperforms several matrix factorization-based algorithms and effectively identifies multi-omics biomarkers for AD. Additionally, single-cell RNA sequencing (scRNA-seq) data for AD were collected, and genes within significant modules were used to categ orize different types of cell clusters into high and low-risk cell groups. Finally, the study extensively explores the differences in differentiation and communication between these two cell types. The multi-omics biomarkers unearthed in this study can serve as valuable referenc...
Source: Journal of Molecular Neuroscience - Category: Neuroscience Source Type: research