Establishing short-term occupational exposure limits (STELs) for sensory irritants using predictive and < em > in silico < /em > respiratory rate depression (RD < sub > 50 < /sub > ) models

Inhal Toxicol. 2024 Jan 22:1-13. doi: 10.1080/08958378.2023.2299867. Online ahead of print.ABSTRACTSensory irritation is a health endpoint that serves as the critical effect basis for many occupational exposure limits (OELs). Schaper 1993 described a significant relationship with high correlation between the measured exposure concentration producing a 50% respiratory rate decrease (RD50) in a standard rodent assay and the American Conference of Governmental Industrial Hygienists (ACGIH®) Threshold Limit Values (TLVs®) as time-weighted averages (TWAs) for airborne chemical irritants. The results demonstrated the potential use of the RD50 values for deriving full-shift TWA OELs protective of irritant responses. However, there remains a need to develop a similar predictive model for deriving workplace short-term exposure limits (STELs) for sensory irritants. The aim of our study was to establish a model capable of correlating the relationship between RD50 values and published STELs to prospectively derive short-term exposure OELs for sensory irritants. A National Toxicology Program (NTP) database that included chemicals with both an RD50 and established STELs was used to fit several linear regression models. A strong correlation between RD50s and STELs was identified, with a predictive equation of ln (STEL) (ppm) = 0.86 * ln (RD50) (ppm) - 2.42 and an R2 value of 0.75. This model supports the use of RD50s to derive STELs for chemicals without existing exposure recommendations....
Source: Inhalation Toxicology - Category: Respiratory Medicine Authors: Source Type: research