Biomarker discovery in acetaminophen hepatotoxicity: leveraging single-cell transcriptomics and mechanistic insight

Expert Rev Clin Pharmacol. 2024 Jan-Jun;17(2):143-155. doi: 10.1080/17512433.2024.2306219. Epub 2024 Jan 29.ABSTRACTINTRODUCTION: Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury and can cause a rapid progression to acute liver failure (ALF). Therefore, the identification of prognostic biomarkers to determine which patients will require a liver transplant is critical for APAP-induced ALF.AREAS COVERED: We begin by relating the mechanistic investigations in mouse models of APAP hepatotoxicity to the human APAP overdose pathophysiology. We draw insights from the established sequence of molecular events in mice to understand the progression of events in the APAP overdose patient. Through this mechanistic understanding, several new biomarkers, such as CXCL14, have recently been evaluated. We also explore how single-cell RNA sequencing, spatial transcriptomics, and other omics approaches have been leveraged for identifying novel biomarkers and how these approaches will continue to push the field of biomarker discovery forward.EXPERT OPINION: Recent investigations have elucidated several new biomarkers or combination of markers such as CXCL14, a regenerative miRNA signature, a cell death miRNA signature, hepcidin, LDH, CPS1, and FABP1. While these biomarkers are promising, they all require further validation. Larger cohort studies analyzing these new biomarkers in the same patient samples, while adding these candidate biomarkers to prognostic models w...
Source: Expert Review of Clinical Pharmacology - Category: Drugs & Pharmacology Authors: Source Type: research