Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression

Eur J Med Genet. 2023 Dec;66(12):104869. doi: 10.1016/j.ejmg.2023.104869. Epub 2023 Oct 29.ABSTRACTDespite advances in the clinical management of childhood acute myeloid leukemia (AML) during the last decades, outcome remains fatal in approximately one third of patients. Primary chemoresistance, relapse and acute and long-term toxicities to conventional myelosuppressive therapies still constitute significant challenges and emphasize the unmet need for effective targeted therapies. Years of scientific efforts have translated into extensive insights on the heterogeneous spectrum of genetics and oncogenic signaling pathways of AML and identified a subset of patients characterized by upregulation of HOXA and HOXB homeobox genes and myeloid ecotropic virus insertion site 1 (MEIS1). Aberrant HOXA/MEIS1 expression is associated with genotypes such as rearrangements in Histone-lysine N-methyltransferase 2A (KMT2A-r), nucleoporin 98 (NUP98-r) and mutated nucleophosmin (NPM1c) that are found in approximately one third of children with AML. AML with upregulated HOXA/MEIS1 shares a number of molecular vulnerabilities amenable to recently developed molecules targeting the assembly of protein complexes or transcriptional regulators. The interaction between the nuclear scaffold protein menin and KMT2A has gained particular interest and constitutes a molecular dependency for maintenance of the HOXA/MEIS1 transcription program. Menin inhibitors disrupt the menin-KMT2A complex in preclinical m...
Source: European Journal of Medical Genetics - Category: Genetics & Stem Cells Authors: Source Type: research