Sodium Selenite Ameliorates Silver Nanoparticles Induced Vascular Endothelial Cytotoxic Injury by Antioxidative Properties and Suppressing Inflammation Through Activating the Nrf2 Signaling Pathway

Biol Trace Elem Res. 2023 Dec 27. doi: 10.1007/s12011-023-04014-2. Online ahead of print.ABSTRACTSilver nanoparticles (AgNP) are the dominant nanomaterials in commercial products and the medical field, but the widespread occurrence of AgNP has become a global threat to human health. Growing studies indicate that AgNP exposure can induce vascular endothelial toxicity by excessive oxidative stress and inflammation, which is closely related to cardiovascular disease (CVD), but the potential intrinsic mechanism remains poorly elucidated. Thus, it has been crucial to control the toxicological effects of AgNP in order to improve their safety and increase the outcome of their applications.Multiple researches have demonstrated that sodium selenite (Se) possesses the capability to counteract the toxicity of AgNP, but the functional role of Se in AgNP-induced CVD is largely unexplored. The aim of this study was to explore the potential protective effect of Se on AgNP-induced vascular endothelial lesion and elucidate the underlying mechanisms. An in vivo model of toxicity in animals was established by the instillation of 200 µL of AgNP into the trachea of rats both with (0.2 mg/kg/day) and without Se treated. In vitro experiments, human umbilical vein endothelial cells (HUVECs) were incubated with AgNP (0.3 µg/mL ) and Se for a duration of 24 h. Utilizing transmission electron microscopy, we observed that the internalization of AgNP-induced endothelial cells was desquamated from the i...
Source: Biological Trace Element Research - Category: Biology Authors: Source Type: research