Proteomic profiling of membrane vesicles from Mycobacterium avium subsp. paratuberculosis: Navigating towards an insilico design of a multi-epitope vaccine targeting membrane vesicle proteins

J Proteomics. 2023 Dec 7;292:105058. doi: 10.1016/j.jprot.2023.105058. Online ahead of print.ABSTRACTBacteria typically produce membrane vesicles (MVs) at varying levels depending on the surrounding environments. Gram-negative bacterial outer membrane vesicles (OMVs) have been extensively studied for over 30 years, but MVs from Gram-positive bacteria only recently have been a focus of research. In the present study, we isolated MVs from Mycobacterium avium subsp. paratuberculosis (MAP) and analyzed their protein composition using LC-MS/MS. A total of 316 overlapping proteins from two independent preparations were identified in our study, and topology prediction showed these cargo proteins have different subcellular localization patterns. When MVs were administered to bovine-derived macrophages, significant up-regulation of pro-inflammatory cytokines was observed via qRT-PCR. Proteome functional annotation revealed that many of these proteins are involved in the cellular protein metabolic process, tRNA aminoacylation, and ATP synthesis. Secretory proteins with high antigenicity and adhesion capability were mapped for B-cell and T-cell epitopes. Antigenic, Immunogenic and IFN-γ inducing B-cell, MHC-I, and MHC-II epitopes were stitched together through linkers to form multi-epitope vaccine (MEV) construct against MAP. Strong binding energy was observed during the docking of the 3D structure of the MEV with the bovine TLR2, suggesting that the putative MEV may be a promising vac...
Source: Journal of Proteomics - Category: Biochemistry Authors: Source Type: research