Accelerated Epigenetic Age and Cardiovascular Risk Factors

Epigenetic patterns determine the behavior of a cell, and change constantly in response to cell state and the surrounding tissue environment. Epigenetic state can be used to measure biological age, the epigenetic clock. When an epigenetic clock indicates an age older than chronological age, that is referred to as epigenetic age acceleration. While the clocks are not fully understood in detail, it is thought that the specific epigenetic changes measured are reflective of the burden of cell and tissue damage and dysfunction that causes aging. This acceleration has been shown to correlate with risk and status of a number of age-related conditions. In today's open access paper, researchers compare epigenetic age acceleration with cardiovascular risk factors. Their point of view is that epigenetic aging, and specifically increased DNA methylation, is a cause rather than a consequence of dysfunction. The work on epigenetic reprogramming of the past few years is supportive of this view that epigenetic change produces significant downstream consequences in aging: reprogramming the epigenetics of old cells does appear to produce some degree of rejuvenation in cells, tissues, and animals. It may be quite close to the root causes of aging, if the work showing it to be a direct consequence of DNA double strand break repair continues to hold up. This is not supportive of the idea that increased DNA methylation is generally a bad thing, however, or that blanket reductions in DNA met...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs