Potential Neuroprotective Strategies using Smart Drug Delivery Systems for Alzheimer's Disease

CONCLUSION: The biology of the BBB and its processes of penetration must be carefully taken into account while creating DDSs. If we have a better grasp of the disease's mechanism, we might be able to overcome the shortcomings of current treatments for AD. Different DDSs show interesting properties for delivering medication tailored to the brain. This review paper examines the recent applications of DDSs in diverse domains. By selecting the best targeting vectors and optimizing the combination of carriers, multifunctionalized DDS may be produced, and these DDS have a significant impact on AD therapy potential. To develop DDSs with the best therapeutic efficacy and manageable side effects, experts from a variety of fields may need to contribute their efforts. Currently, the therapeutic use of nanotechnology-based DDSs appears to be a promising prospect for AD therapy, and as the pathophysiology of AD is better understood, this strategy will develop over time.PMID:37873911 | DOI:10.2174/0118715265254985231012065058
Source: Infectious Disorders Drug Targets - Category: Infectious Diseases Authors: Source Type: research