Thymopentin (TP-5) prevents lipopolysaccharide-induced neuroinflammation and dopaminergic neuron injury by inhibiting the NF- κB/NLRP3 signaling pathway

In this study, lipopolysaccharide (LPS) was used to establish an inflammation model, and the therapeutic effect of TP-5 was evaluated. Behavioral tests showed that TP-5 treatment could improve the performance of LPS-treated mice in the open field and pole test, but not hanging wire test. TP-5 also attenuated neuronal lesions in the brains of LPS-treated mice. TP-5 reduced cytotoxicity and morphological changes in activated microglia. Label-free quantitative analysis indicated that the expression of multiple proteins and the activation of associated signaling pathways were altered by TP-5. Moreover, TP-5 could inhibit LPS-induced neuroinflammation in the brain and BV2 microglia and the expression of major genes in the NF-κB/NLRP3 signaling pathway. Additionally, tyrosine hydroxylase (TH) expression downregulation was rescued in the LPS + TP-5 group compared with the LPS group. We conclude that TP-5 exerts neuroprotection by alleviating LPS-induced inflammatory damage and dopaminergic neurodegeneration. The protective effect of TP-5 may involve the NF-κB/NLRP3 signaling pathway.PMID:37121113 | DOI:10.1016/j.intimp.2023.110109
Source: International Immunopharmacology - Category: Allergy & Immunology Authors: Source Type: research