Multimerin 1 aids in the progression of ovarian cancer possibly via modulation of DNA damage response and repair pathways

Mol Cell Biochem. 2023 Feb 1. doi: 10.1007/s11010-023-04668-5. Online ahead of print.ABSTRACTOvarian cancer is one of the leading causes of deaths among women. Despite advances in the treatment regimes, a high rate of diagnosis in the advanced stage makes it almost an incurable malignancy. Thus, more research efforts are required to identify potential molecular markers for early detection of the disease and therapeutic targets to augment the survival rate of ovarian cancer patients. Previously, in this context, we identified dysregulated expression of multimerin 1 (MMRN1) in ovarian cancer. To elucidate the relationship between MMRN1 expression and ovarian cancer progression, siRNA-based MMRN1 knockdown was employed and various cell assays were performed to study its effect on ovarian cancer cells. In addition, network of dysregulated proteins was identified by quantitative proteomics and associated pathways were explored by bioinformatics analysis. MMRN1 silencing showed a significant reduction in cell viability, adhesion, migration, and invasion and a high frequency of cell apoptosis. Label-free quantitative proteomics and in-depth statistical analysis identified 448 dysregulated proteins, majority of which were overexpressed in MMRN1 knockdown cells. The pathways overrepresented in ovarian cancer were DNA replication, mismatch repair, nucleotide excision repair, and cell cycle regulation. Conclusively, the findings of this study suggest that MMRN1 aids in the progression o...
Source: Molecular and Cellular Biochemistry - Category: Biochemistry Authors: Source Type: research