Rapamycin in Early Life Delays Development and Modestly Extends Life Span in Mice

As a general rule, 10% life extension in mice via metabolic alteration is uninteresting. It depends on the fine details, of course, but most age-slowing interventions so far discovered are in some way upregulating cellular stress response mechanisms, or adjusting growth hormone signaling. Neither of these approaches works anywhere near as well in long-lived mammals, such as our own species, as it does in short-lived mammals, such as mice, and in lower animal species. Short-lived species have life spans that are very plastic in response to environmental cues, such as the lack of nutrients that provoke greater stress response activity. Calorie restriction can extend life in mice by as much as 40%, but certainly doesn't have that great an effect in humans. Growth hormone receptor knockout can extend mouse life span to an even greater degree, but humans with the analogous Laron syndrome don't appear to live significantly longer than the rest of us. Today's open access paper reports on another novel dead end in considering the effects of metabolic change on longevity. Here, an mTOR inhibitor is given to mice in early life. The result is slowed development, reduced growth, and a modest 11.8% extension of median life span. mTOR inhibition is a well-proven way to modestly and reliably slow aging when used in later life in mice, but here the effects appear an amalgam of the usual mechanisms of stress response upregulation coupled with the reduced growth seen in mice in which gr...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs