Filtered By:
Condition: Mitochondrial Disease
Nutrition: Nutrition

This page shows you your search results in order of date.

Order by Relevance | Date

Total 5 results found since Jan 2013.

Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPAR α pathway
This study investigated the preventive and therapeutic effects of RSV on high-fat diet (HFD)-induced NAFLD in rats and palmitate acid (PA)-induced hepatocyte steatosis in HepG2 cells. Hepatocytes were incubated with inhibitors of peroxisome proliferator-activated receptor α (PPARα) or short interfering RNAs (siRNAs) targeting PPARα, AMP-activated protein kinase (AMPK), and protein kinase A (PKA) to determine the underlying mechanisms. We found that RSV noticeably ameliorated HFD-induced hepatic steatosis in rats and inhibited PA-induced lipid accumulation in HepG2 cells. Moreover, RSV improved lipid metabolism, enhanced...
Source: Applied Physiology, Nutrition, and Metabolism - June 6, 2019 Category: Physiology Authors: Yujie Huang Hedong Lang Ka Chen Yong Zhang Yanxiang Gao Li Ran Long Yi Mantian Mi Qianyong Zhang Source Type: research

FGF21 as Modulator of Metabolism in Health and Disease
In conclusion, FGF21 belongs to a promising class of cytokines that are induced in response to stress and that can be used as a drug, drug target, or through a biomarker, depending on the physio-pathological context. All these findings will become clear when FGF21 will be used as a therapeutic molecule, exploiting the beneficial effects of FGF21 for treating metabolic disease or when it will be blocked to ameliorate disease progression and the onset of disease. Author Contributions CT and MS wrote the manuscript. VR contributed to the discussion. Funding This work was supported from the AFM-Telethon (19524), Italian Mi...
Source: Frontiers in Physiology - April 16, 2019 Category: Physiology Source Type: research

Increased Dynamin ‐Related Protein 1–Dependent Mitochondrial Fission Contributes to High‐Fat‐Diet‐Induced Cardiac Dysfunction and Insulin Resistance by Elevating Tafazzin in Mouse Hearts
ConclusionIn HF ‐diet‐fed mouse hearts, increased tafazzin contributes to insulin resistance via mediating Drp‐1 translocation to the mitochondria, and a small non‐coding RNA, miR‐125b‐5p, at least partially regulates this signaling pathway and alleviates insulin resistance.
Source: Molecular Nutrition and Food Research - January 18, 2019 Category: Food Science Authors: Wenguang Chang, Dandan Xiao, Xiang Ao, Mengyang Li, Tao Xu, Jianxun Wang Tags: Research Article Source Type: research

Increased Dynamin ‐Related Protein 1‐Dependent Mitochondrial Fission Contributes to High‐Fat Diet‐Induced Cardiac Dysfunction and Insulin Resistance by Elevating Tafazzin in Mouse Hearts
ConclusionIn high ‐fat diet‐fed mouse hearts, increased tafazzin contributes to insulin resistance via mediating Drp‐1 translocation to the mitochondria, and a small non‐coding RNA, miR‐125b‐5p, at least partially regulates this signalling pathway and alleviates insulin resistance.This article is protected by copyright. All rights reserved
Source: Molecular Nutrition and Food Research - January 10, 2019 Category: Food Science Authors: Wenguang Chang, Dandan Xiao, Xiang Ao, Mengyang Li, Tao Xu, Jianxun Wang Tags: Research Article Source Type: research