Filtered By:
Condition: Diabetes
Therapy: Gene Therapy

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 7 results found since Jan 2013.

Caveolin-1 upregulation in diabetic fibroblasts and wounded tissues: implication for understanding the underlying mechanisms of non-healing diabetic ulcers.
Abstract A heightened state of oxidative stress and senescence of fibroblasts constitute potential therapeutic targets in non-healing diabetic wounds. Here, we studied the underlying mechanism mediating diabetes-induced cellular senescence using in vitro cultured dermal fibroblasts and in vivo circular wounds. Our results demonstrated that the total antioxidant capacity, mRNA levels of thioredoxinreductase and glucose-6-phosphate dehydrogenase as well as the ratio of NADPH/NADP were markedly decreased in fibroblasts from patients with type 2 diabetes (DFs). Consistent with this shifts in favor of excessive reactiv...
Source: American Journal of Physiology. Endocrinology and Metabolism - August 13, 2013 Category: Physiology Authors: Bitar MS, Abdel-Halim SM, Al-Mulla F Tags: Am J Physiol Endocrinol Metab Source Type: research

Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: implications for evidence-based therapy of delayed wound healing in diabetes
A heightened state of oxidative stress and senescence of fibroblasts constitute potential therapeutic targets in nonhealing diabetic wounds. Here, we studied the underlying mechanism mediating diabetes-induced cellular senescence using in vitro cultured dermal fibroblasts and in vivo circular wounds. Our results demonstrated that the total antioxidant capacity and mRNA levels of thioredoxinreductase and glucose-6-phosphate dehydrogenase as well as the ratio of NADPH/NADP were decreased markedly in fibroblasts from patients with type 2 diabetes (DFs). Consistent with this shift in favor of excessive reactive oxygen species,...
Source: AJP: Endocrinology and Metabolism - October 15, 2013 Category: Endocrinology Authors: Bitar, M. S., Abdel-Halim, S. M., Al-Mulla, F. Tags: Articles Source Type: research

Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTP β/ζ Axis: Relevance in Therapeutic Development
Conclusion The expression of the components of the PTN-MK-RPTPβ/ζ axis in immune cells and in inflammatory diseases suggests important roles for this axis in inflammation. Pleiotrophin has been recently identified as a limiting factor of metainflammation, a chronic pathological state that contributes to neuroinflammation and neurodegeneration. Pleiotrophin also seems to potentiate acute neuroinflammation independently of the inflammatory stimulus while MK seems to play different -even opposite- roles in acute neuroinflammation depending on the stimulus. Which are the functions of MK and PTN in chronic neuroi...
Source: Frontiers in Pharmacology - April 11, 2019 Category: Drugs & Pharmacology Source Type: research

FGF21 as Modulator of Metabolism in Health and Disease
In conclusion, FGF21 belongs to a promising class of cytokines that are induced in response to stress and that can be used as a drug, drug target, or through a biomarker, depending on the physio-pathological context. All these findings will become clear when FGF21 will be used as a therapeutic molecule, exploiting the beneficial effects of FGF21 for treating metabolic disease or when it will be blocked to ameliorate disease progression and the onset of disease. Author Contributions CT and MS wrote the manuscript. VR contributed to the discussion. Funding This work was supported from the AFM-Telethon (19524), Italian Mi...
Source: Frontiers in Physiology - April 16, 2019 Category: Physiology Source Type: research

Gene Therapy Leaves a Vicious Cycle
Reena Goswami1, Gayatri Subramanian2, Liliya Silayeva1, Isabelle Newkirk1, Deborah Doctor1, Karan Chawla2, Saurabh Chattopadhyay2, Dhyan Chandra3, Nageswararao Chilukuri1 and Venkaiah Betapudi1,4* 1Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States 2Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States 3Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States 4Department of Physiology and Biophysics, Case Western Reserve University, Clev...
Source: Frontiers in Oncology - April 23, 2019 Category: Cancer & Oncology Source Type: research

Newer therapeutic approaches towards the management of diabetes mellitus: an update.
This article focused on the emerging therapeutic approaches other than the conventional pharmacological therapies, which include stem cell therapy, gene therapy, siRNA, nanotechnology and theranostics. PMID: 31663302 [PubMed - as supplied by publisher]
Source: Panminerva Medica - November 1, 2019 Category: General Medicine Tags: Panminerva Med Source Type: research

Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP)
Diabetic neuropathy is the most entrenched complication of diabetes. Usually, it affects the distal foot and toes, which then gradually approaches the lower part of the legs. Diabetic foot ulcer (DFU) could be one of the worst complications of diabetes mellitus. Long-term diabetes leads to hyperglycemia, which is the utmost contributor to neuropathic pain. Hyperglycemia causing an upregulation of voltage-gated sodium channels in the dorsal root ganglion (DRG) was often observed in models of neuropathic pain. DRG opening frequency increases intracellular sodium ion levels, which further causes increased calcium channel open...
Source: Frontiers in Endocrinology - February 8, 2022 Category: Endocrinology Source Type: research