Calcitriol ameliorates renal injury with high-salt diet-induced hypertension by upregulating GLIS2 expression and AMPK/mTOR-regulated autophagy

Gene. 2022 Jan 31:146239. doi: 10.1016/j.gene.2022.146239. Online ahead of print.ABSTRACTThe goal of the present study was to investigate the protective effect of calcitriol on high-salt diet-induced hypertension. The hypertension rat model was established by a long-term high-salt diet (8% NaCl). Rats were treated with calcitriol, losartan, or their combination. Histological staining was used to confirm renal pathology. Global transcriptome analysis of renal tissues was performed, and the mechanism of the therapeutic effect of calcitriol was analysed by functional annotation and pathway analysis of the differentially expressed genes (DEGs) as well as by Western blotting analysis. The core genes for potential therapeutic regulation were identified through the coexpression gene network. For in vitro HK-2 cell experiments, small interfering RNA (siRNA) was used to knockdown key a transcription factor (TF) Glis2 to validate the therapeutic target of calcitriol. MAPK1 and CXCL12 expression was downregulated and the apoptosis pathway was significantly enriched by calcitriol treatment. The western blotting results showed that calcitriol treatment increased AMPK phosphorylation and decreased downstream mTOR phosphorylation, which was accompanied by a decrease in autophagy protein p62 expression and an increase in LC3-II/I expression. GLIS2 was identified as a specific therapeutic target for calcitriol. GLIS2 expression was upregulated by calcitriol and confirmed by HK-2 cells in vitr...
Source: Gene - Category: Genetics & Stem Cells Authors: Source Type: research