Systems biomarkers for papillary thyroid cancer prognosis and treatment through multi-omics networks

Arch Biochem Biophys. 2021 Nov 17:109085. doi: 10.1016/j.abb.2021.109085. Online ahead of print.ABSTRACTThe identification of biomolecules associated with papillary thyroid cancer (PTC) has upmost importance for the elucidation of the disease mechanism and the development of effective diagnostic and treatment strategies. Despite particular findings in this regard, a holistic analysis encompassing molecular data from different biological levels has been lacking. In the present study, a meta-analysis of four transcriptome datasets was performed to identify gene expression signatures in PTC, and reporter molecules were determined by mapping gene expression data onto three major cellular networks, i.e., transcriptional regulatory, protein-protein interaction, and metabolic networks. We identified 282 common genes that were differentially expressed in all PTC datasets. In addition, six proteins (FYN, JUN, LYN, PML, SIN3A, and RARA), two Erb-B2 receptors (ERBB2 and ERBB4), two cyclin-dependent receptors (CDK1 and CDK2), and three histone deacetylase receptors (HDAC1, HDAC2, and HDAC3) came into prominence as proteomic signatures in addition to several metabolites including lactaldehyde and proline at the metabolome level. Significant associations with calcium and MAPK signaling pathways and transcriptional and post-transcriptional activities of 12 TFs and 110 miRNAs were also observed at the regulatory level. Among them, six miRNAs (miR-30b-3p, miR-15b-5p, let-7a-5p, miR-130b-3p, m...
Source: Archives of Biochemistry and Biophysics - Category: Biochemistry Authors: Source Type: research