Metabolic reprogramming in epithelial ovarian cancer

Am J Transl Res. 2021 Sep 15;13(9):9950-9973. eCollection 2021.ABSTRACTCancer cells usually show adaptations to their metabolism that facilitate their growth, invasiveness, and metastasis. Therefore, reprogramming the energy metabolism is one of the current key foci of cancer research and treatment. Although aerobic glycolysis-the Warburg effect-has been thought to be the dominant energy metabolism in cancer, recent data indicate a different possibility, specifically that oxidative phosphorylation (OXPHOS) is the more likely form of energy metabolism in some cancer cells. Due to the heterogeneity of epithelial ovarian cancer, there are different metabolic preferences among cell types, study types (in vivo/in vitro), and invasiveness. Current knowledge acknowledges glycolysis to be the main energy provider in ovarian cancer growth, invasion, migration, and viability, so specific agents targeting the glycolysis or OXPHOS pathways have been used in previous studies to attenuate tumor progression and increase chemosensitization. However, chemoresistant cell lines exert various metabolic preferences. This review comprehensively summarizes the information from existing reports which could together provide an in-depth understanding and insights for the development of a novel targeted therapy which can be used as an adjunctive treatment to standard chemotherapy to decelerate tumor progression and decrease the epithelial ovarian cancer mortality rate.PMID:34650675 | PMC:PMC8507042
Source: Cell Research - Category: Cytology Authors: Source Type: research