Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain

Neuropathic pain remains an undertreated condition and there is a medical need to develop effective treatments. Accumulating evidence indicates that posttranscriptional regulation of gene expression is involved in neuropathic pain; however, RNA processing is not clearly investigated. Our study investigated the role of HuR, an RNA binding protein, in promoting neuropathic pain and trauma-induced microglia activation in the spared nerve injury mouse model. To this aim, an antisense oligonucleotide (ASO) knockdown of HuR gene expression was used. Antisense oligonucleotides poorly cross the blood–brain barrier and an intranasal (i.n.) administration was used to achieve central nervous system penetration through a noninvasive delivery. The efficacy of i.n. ASO administration was compared to an intrathecal (i.t.) delivery. I.n. administered ASO reduced spinal HuR protein and relieved pain hypersensitivity with a similar efficacy to i.t. administration. Immunofluorescence studies showed that HuR was expressed in activated microglia, colocalized with p38 and, partially, with extracellular signal-regulated kinase (ERK)1/2 within the spinal cord dorsal horn. An anti-HuR ASO inhibited the activation of spinal microglia by reducing the levels of proinflammatory cytokines, inducible nitric oxide synthase, the activation of nuclear factor-κB (NF-κB), and suppressed the spared nerve injury–induced overphosphorylation of spinal p38, ERK1/2 and c-Jun-N-terminal kinase (JNK)-1. In additi...
Source: Pain - Category: Anesthesiology Tags: Research Paper Source Type: research