G protein–coupled receptor GPR151 is involved in trigeminal neuropathic pain through the induction of Gβγ/extracellular signal-regulated kinase-mediated neuroinflammation in the trigeminal ganglion

Trigeminal nerve injury–induced neuropathic pain is a debilitating chronic orofacial pain syndrome but lacks effective treatment. G protein–coupled receptors (GPCRs), especially orphan GPCRs (oGPCRs) are important therapeutic targets in pain medicine. Here, we screened upregulated oGPCRs in the trigeminal ganglion (TG) after partial infraorbital nerve transection (pIONT) and found that Gpr151 was the most significantly upregulated oGPCRs. Gpr151 mRNA was increased from pIONT day 3 and maintained for more than 21 days. Furthermore, GPR151 was expressed in the neurons of the TG after pIONT. Global mutation or knockdown of Gpr151 in the TG attenuated pIONT-induced mechanical allodynia. In addition, the excitability of TG neurons was increased after pIONT in wild-type (WT) mice, but not in Gpr151−/− mice. Notably, GPR151 bound to Gαi protein, but not Gαq, Gα12, or Gα13, and activated the extracellular signal-regulated kinase (ERK) through Gβγ. Extracellular signal-regulated kinase was also activated by pIONT in the TG of WT mice, but not in Gpr151−/− mice. Gene microarray showed that Gpr151 mutation reduced the expression of a large number of neuroinflammation-related genes that were upregulated in WT mice after pIONT, including chemokines CCL5, CCL7, CXCL9, and CXCL10. The mitogen-activated protein kinase inhibitor (PD98059) attenuated mechanical allodynia and reduced the upregulation of these chemokines after pIONT. Collectively, this study not only revealed t...
Source: Pain - Category: Anesthesiology Tags: Research Paper Source Type: research