Biodistribution of Intramuscularly-Transplanted Human Dental Pulp Stem Cells in Immunocompetent Healthy Rats through NIR Imaging

Owing to their neural crest origin, dental pulp stem cells (DPSCs) are increasingly gaining prominence in treating nervous system disease conditions. However, as per the regulatory bodies [European-Medicines Agency (EMA), Indian-Council of Medical-Research (ICMR)], their biodistribution after transplantation needs to be evaluated for them to be considered for cell-based therapy for clinical trials. There are yet no studies describing the dynamic distribution of human origin DPSCs (hDPSCs) after transplantation in an immunocompetent, physiologically healthy animal model. Here, using near-infrared (NIR)-based whole animal and ex vivo tissue imaging, we assessed the biodistribution of intramuscularly transplanted hDPSCs in immunocompetent healthy Wistar rats. Further validation was done by quantifying gene expression of the humanAlu gene in rat tissues. After 24 h of transplantation, an increase in signal intensity and area of signal was observed in the muscle of administration compared to 30 min and 6 h. At hour 24, neither increase in humanAlu nor humanKi67 gene expression was seen in the rat muscle, thus confirming that the increase in signal area and intensity at hour 24 was not due to proliferation of the transplanted cells. Rather at hour 24, the NIR-signal intensity in bone marrow increased, suggesting that the NIR-tagged DPSCs have started entering into the blood vessels adjacent to the muscle, and the blood vessels being placed just beneath the subcutaneous layer might ...
Source: Cells Tissues Organs - Category: Cytology Source Type: research