miR-138-5p knockdown promotes osteogenic differentiation through FOXC1 up-regulation in human bone mesenchymal stem cells.

This study aimed to certify the hypothesis that miR-138-5p is expected to reduced osteodifferentiation of human bone mesenchymal stem cells (hBMSCs) by FOXC1 down-regulation. hBMSCs were separated from bone marrow and osteogenic induction medium was added to stimulate osteogenic differentiation. Flow cytometric analysis was applied to evaluate the expression of cell surface antigens associated with hBMSCs, including CD29, CD44, CD90, CD45 and CD34. qRT-PCR assay and western blot assay were determined to measure the mRNA and protein expression of miR-138-5p, OCN, RUNX2, BSP, ALP and FOXC1. Alkaline phosphatase (ALP) staining assay and Alizarin Red Staining (ARS) assay were determined to validate the osteogenic differentiation. Luciferase assay was applied to test the interaction of miR-138-5p and FOXC1. We demonstrated miR-138-5p is downregulated in osteogenic differentiated hBMSCs. Besides, miR-138-5p overexpression diminished osteodifferentiated markers expression, ALP activity and ARS activity. Furthermore, we revealed that forkhead transcription factor C1 (FOXC1) was a downstream target gene of miR-138-5p and knockdown of miR-138-5p improved the osteogenesis differentiation of hBMSCs by upregulating FOXC1. miR-138-5p knockdown promoted osteogenic differentiation in hBMSCs via directly targeting FOXC1. This study suggested miR-138-5p may be a new target for hBMSCs osteogenic differentiation and the treatment of bone defects. PMID: 33058690 [PubMed - as supplied by p...
Source: Biochemistry and Cell Biology - Category: Biochemistry Authors: Tags: Biochem Cell Biol Source Type: research