Softening of the chronic hemi-section spinal cord injury scar parallels dysregulation of cellular and extracellular matrix content.

This study assessed the glial and fibrotic scar tissue's Young's modulus and composition (scar morphometry, cell identity, extracellular matrix (ECM) makeup) that contribute to the tissue's stiffness. The spatial Young's modulus of a chronic (~18-wks, post-injury) hemi-section, including the glial and fibrotic regions, were significantly less than naïve tissue (~200 Pa; p < 0.0001). The chronic scar contained cystic cavities dispersed in areas of dense nuclei packing. Abundant CNS cell types such as astrocytes, oligodendrocytes, and neurons were dysregulated in the scar, while epithelial markers such as vimentin were upregulated. The key ECM components in the CNS, namely sulfated proteoglycans (sPGs), were significantly downregulated following injury with concomitant upregulation of unsulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA), likely altering the foundational ECM network that contributes to tissue stiffness. Our results reveal the Young's modulus of the chronic SCI scar as well as quantification of contributing elastic components that can provide a foundation for future study into their role in tissue repair and regeneration. PMID: 32957245 [PubMed - in process]
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Tags: J Mech Behav Biomed Mater Source Type: research