A Novel Hybrid Membrane VAD as First Step Toward Hemocompatible Blood Propulsion.

A Novel Hybrid Membrane VAD as First Step Toward Hemocompatible Blood Propulsion. Ann Biomed Eng. 2020 Sep 08;: Authors: Ferrari A, Giampietro C, Bachmann B, Bernardi L, Bezuidenhhout D, Ermanni P, Hopf R, Kitz S, Kress G, Loosli C, Marina V, Meboldt M, Pellegrini G, Poulikakos D, Rebholz M, Schmid Daners M, Schmidt T, Starck C, Stefopoulos G, Sündermann S, Thamsen B, Zilla P, Potapov E, Falk V, Mazza E Abstract Heart failure is a raising cause of mortality. Heart transplantation and ventricular assist device (VAD) support represent the only available lifelines for end stage disease. In the context of donor organ shortage, the future role of VAD as destination therapy is emerging. Yet, major drawbacks are connected to the long-term implantation of current devices. Poor VAD hemocompatibility exposes the patient to life-threatening events, including haemorrhagic syndromes and thrombosis. Here, we introduce a new concept of artificial support, the Hybrid Membrane VAD, as a first-of-its-kind pump prototype enabling physiological blood propulsion through the cyclic actuation of a hyperelastic membrane, enabling the protection from the thrombogenic interaction between blood and the implant materials. The centre of the luminal membrane surface displays a rationally-developed surface topography interfering with flow to support a living endothelium. The precast cell layer survives to a range of dynamically changing pump actuating conditions ...
Source: Annals of Biomedical Engineering - Category: Biomedical Engineering Authors: Tags: Ann Biomed Eng Source Type: research