Interleukin ‑1β attenuates the proliferation and differentiation of oligodendrocyte precursor cells through regulation of the microRNA‑202‑3p/β‑catenin/Gli1 axis.

Interleukin‑1β attenuates the proliferation and differentiation of oligodendrocyte precursor cells through regulation of the microRNA‑202‑3p/β‑catenin/Gli1 axis. Int J Mol Med. 2020 Jun 18;: Authors: Li Y, Liu L, Ding X, Liu Y, Yang Q, Ren B Abstract The inflammatory cytokine interleukin (IL)‑1β has been implicated in demyelinating diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis, and brain degenerative diseases, such as Alzheimer's disease. However, the cellular and molecular mechanisms underlying the damaging effects of IL‑1β on myelination are poorly understood. Therefore, the present study was designed to investigate whether IL‑1β modifies the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) through regulating the miR‑202‑3p/β‑catenin/glioma‑associated oncogene homolog 1 (Gli1) axis. It was observed that IL‑1β significantly attenuated the proliferation and differentiation of OPCs, as evidenced by a decrease in bromodeoxyuridine incorporation and reduced percentage of myelin basic protein‑positive cells among the total number of oligodendrocyte transcription factor 2‑positive cells. In addition, IL‑1β markedly decreased the expression of miR‑202‑3p and increased the protein expression of β‑catenin and Gli1, all of which were reversed by the IL‑1β inhibitor, IL‑1Ra. Treatment with the β‑catenin inhibitor XAV939, Gli1 si...
Source: International Journal of Molecular Medicine - Category: Molecular Biology Authors: Tags: Int J Mol Med Source Type: research