Nanoparticles Containing Cyclodextrins to Sequester Cholesterol Do Well in an Atherosclerosis Animal Model

Cyclodextrins bind to cholesterol. This aspect of their biochemistry has been used by the Underdog Pharmaceuticals team to produce a cyclodextrin that binds the form of toxic oxidized cholesterol known as 7-ketocholesterol. 7-ketocholesterol builds up with age and is implicated in a range of age-related conditions, particularly atherosclerosis, as altered cholesterols cause dysfunction in the macrophage cells responsible for removing cholesterols and other lipids from blood vessel walls. The outcome is the creation of fatty lesions that narrow and weaken blood vessels in older individuals, an ultimately fatal condition. Removing 7-ketocholesterol and other problem altered cholesterols is a promising approach to therapy. In today's research materials, the authors report on a different way to use an existing cyclodextrin to tackle atherosclerosis. They encapsulate molecules of the cyclodextrin and a statin in nanoparticles. The nanoparticles release the statin in atherosclerotic lesions, and take in cholesterol molecules that bind to the cyclodextrin. This sequestering of cholesterol aids macrophages in their work, most likely through binding some fraction of the altered cholesterols that cause issues, and results in a sizable reduction in the lesion size in a mouse model. Around a 50% reversal of atherosclerotic lesions is about the best that has been achieved in mice, and this is in that ballpark, averaged over different portions of the aorta. We might take this as hel...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs