Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways.

In this study, human proximal tubular cells (HK2 cells) were incubated with TGF-β1 (2ng/ml) for 48h in the presence or absence of KCa3.1 siRNA or the KCa3.1 inhibitor TRAM34. HK2 cells overexpressing KCa3.1 were studied in parallel. The mRNA and protein expression of monocyte chemoattractant protein-1 (MCP-1) were measured by qRT-PCR and ELISA. Downstream TGF-β1 signaling molecules Smad3, p38 and ERK1/2 were measured by Western blot analysis. Using whole-cell patch clamp techniques we found that TGFβ-1 induced a large KCa3.1 K(+)-current that was inhibited by TRAM34. TGF-β1 also increased MCP-1 mRNA and protein expression in HK2 cells compared to control, an effect that was reversed by in the presence of KCa3.1 siRNA. Similarly, TRAM34 significantly reduced the TGF-β1-mediated increase in MCP-1 at both the mRNA and protein levels. Inhibition of KCa3.1 with KCa3.1 siRNA or TRAM34 also reduced TGF-β1-induced phosphorylation of Smad3, p38 and ERK1/2 MAPK pathways. Conversely overexpression of KCa3.1 induced TGF-β1 signaling cascades and expression of MCP-1. The present study is consistent with a key role for KCa3.1 renal proximal tubular cells in mediating the TGF-β1 induction of MCP-1 expression in HK2 cells via Smad3, p38 and ERK1/2 MAPK signaling pathways. PMID: 24291552 [PubMed - as supplied by publisher]
Source: The International Journal of Biochemistry and Cell Biology - Category: Biochemistry Authors: Tags: Int J Biochem Cell Biol Source Type: research