Homeostatic Regulation of Reward via Synaptic Insertion of Calcium-Permeable AMPA Receptors in Nucleus Accumbens

This article summarizes research of our laboratory aimed at identifying neuroadaptations induced by chronic food restriction (FR) that increase the reward magnitude of drugs and associated cues. The main findings are that FR decreases basal dopamine (DA) transmission, upregulates signaling downstream of the D1 DA receptor (D1R), and triggers synaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). Selective antagonism of CP-AMPARs decreases excitatory postsynaptic currents in NAc medium spiny neurons of FR rats and blocks the enhanced rewarding effects of d-amphetamine and a D1R, but not a D2R, agonist. These results suggest that FR drives CP-AMPARs into the synaptic membrane of D1R-expressing MSNs, possibly as a homeostatic response to reward loss. FR subjects also display diminished aversion for contexts associated with LiCl treatment and centrally infused cocaine. An encompassing, though speculative, hypothesis is that NAc synaptic incorporation of CP-AMPARs in response to food scarcity and other forms of sustained reward loss adaptively increases incentive effects of reward stimuli and, at the same time, diminishes responsiveness to aversive stimuli that have potential to interfere with goal pursuit.
Source: Physiology and Behavior - Category: Physiology Source Type: research