Neuronal vulnerability to fetal hypoxia-reoxygenation injury and motor deficit development relies on regional brain tetrahydrobiopterin levels

We examined if individual variations in the tetrahydrobiopterin cofactor in the parts of the brain controlling motor function could indicate a role in specific damage to motor regions and disruption of circuit integration as an underlying mechanism for acquiring motor disorders, which has not been considered before. The rabbit model mimicked acute placental insufficiency and used uterine ischemia at a premature gestation. MRI during the time of hypoxia-ischemia was used to differentiate which individual fetal brains would become hypertonic. Four brain regions collected immediately after hypoxia-ischemia or 48 h later were analyzed in a blinded fashion. Age-matched sham-operated animals were used as controls. Changes in the reactive nitrogen species and gene expression of the tetrahydrobiopterin biosynthetic enzymes in brain regions were also studied. We found that a combination of low tetrahydrobiopterin content in the cortex, basal ganglia, cerebellum, and thalamus brain regions, but not a unique low threshold of tetrahydrobiopterin, contributed etiologically to hypertonia. The biggest contribution was from the thalamus. Evidence for increased reactive nitrogen species was found in the cortex. By 48 h, tetrahydrobiopterin and gene expression levels in the different parts of the brain were not different between MRI stratified hypertonia and non-hypertonia groups. Sepiapterin treatment given to pregnant dams immediately after hypoxia-ischemia ameliorated hypertonia and dea...
Source: Redox Biology - Category: Biology Source Type: research