NAD+ in Brain Aging and Neurodegenerative Disorders.

NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019 Oct 01;30(4):630-655 Authors: Lautrup S, Sinclair DA, Mattson MP, Fang EF Abstract NAD+ is a pivotal metabolite involved in cellular bioenergetics, genomic stability, mitochondrial homeostasis, adaptive stress responses, and cell survival. Multiple NAD+-dependent enzymes are involved in synaptic plasticity and neuronal stress resistance. Here, we review emerging findings that reveal key roles for NAD+ and related metabolites in the adaptation of neurons to a wide range of physiological stressors and in counteracting processes in neurodegenerative diseases, such as those occurring in Alzheimer's, Parkinson's, and Huntington diseases, and amyotrophic lateral sclerosis. Advances in understanding the molecular and cellular mechanisms of NAD+-based neuronal resilience will lead to novel approaches for facilitating healthy brain aging and for the treatment of a range of neurological disorders. PMID: 31577933 [PubMed - in process]
Source: Cell Metabolism - Category: Cytology Authors: Tags: Cell Metab Source Type: research

Related Links:

Authors: Tabassum R, Jeong NY Abstract Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the onset of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences of oxidat...
Source: International Journal of Medical Sciences - Category: Biomedical Science Tags: Int J Med Sci Source Type: research
Publication date: Available online 31 October 2019Source: Molecular and Cellular NeuroscienceAuthor(s): Kevin McAvoy, Hibiki KawamataAbstractMitochondria play essential metabolic roles in neural cells. Mitochondrial dysfunction has profound effects on the brain. In primary mitochondrial diseases, mutations that impair specific oxidative phosphorylation (OXPHOS) proteins or OXPHOS assembly factors lead to isolated biochemical defects and a heterogeneous group of clinical phenotypes, including mitochondrial encephalopathies. A broader defect of OXPHOS function, due to mutations in proteins involved in mitochondrial DNA maint...
Source: Molecular and Cellular Neuroscience - Category: Neuroscience Source Type: research
Publication date: Available online 6 July 2019Source: MitochondrionAuthor(s): Yuanbo Wu, Meiqiao Chen, Jielong JiangAbstractMitochondrial dysfunction is becoming one of the most emerging pathological process in the etiology of neurological disorders. Other common etiologies of the neurological disorders are aging and oxidative stress. Neurodegenerative disorders for instance Huntington's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Epilepsy, Schizophrenia, Multiple sclerosis, Neuropathic pain and Alzheimer's disease involves mitochondrial dysfunction and is regarded as the core of their pathological process...
Source: Mitochondrion - Category: Biochemistry Source Type: research
Conclusion The key problem with the ND field is the lack of understanding in the events preceding the development of protein-based markers – such as Tau – currently used to diagnose NDs. By this stage, the diseases become more difficult to treat. SncRNAs play an important regulatory role in the maintenance of the homeostatic brain. Therefore, changes in their concentration levels can be indicative of mechanistic changes that could precede protein-based markers. One single sncRNA biomarker is unlikely to differentiate between diseases. However, a combination of sncRNA biomarkers could be illustrative of the me...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
Kukreti Oxidative stress is proposed as a regulatory element in ageing and various neurological disorders. The excess of oxidants causes a reduction of antioxidants, which in turn produce an oxidation–reduction imbalance in organisms. Paucity of the antioxidant system generates oxidative-stress, characterized by elevated levels of reactive species (oxygen, hydroxyl free radical, and so on). Mitochondria play a key role in ATP supply to cells via oxidative phosphorylation, as well as synthesis of essential biological molecules. Various redox reactions catalyzed by enzymes take place in the oxidative phosphoryl...
Source: Molecules - Category: Chemistry Authors: Tags: Review Source Type: research
Conclusions In this review, we analyzed mechanisms through which mitobolites, a distinct set of mitochondria-generated metabolites, can be released from mitochondria and then act as second messengers that contribute to cellular and organismal aging by regulating longevity-defining processes outside of mitochondria. Our analysis indicates that in eukaryotes across phyla, these second messengers of cellular aging exhibit the following common features: (1) they are produced in mitochondria in response to certain changes in the nutrient, stress, proliferation or age status of the cell; it remains unknown, however, what kind o...
Source: Frontiers in Physiology - Category: Physiology Source Type: research
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Regulation of autophagy has been a tremendously popular topic in the aging research community over the past twenty years, so much so that it is very surprising that little progress towards clinical therapies has been made. Search PubMed for autophagy and aging and you'll find a deluge of papers over this time frame, many of which express optimism on the topic of finding ways to upregulate autophagy to improve health and slow the aging process. It is the consensus in the research community that autophagy declines with age, and that there are benefits to be realized through increased autophagy. This may allow many age-relate...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs
Publication date: Available online 20 December 2018Source: Life SciencesAuthor(s): Hasnaa A. Elfawy, Biswadeep DasAbstractMitochondrial function is vital for normal cellular processes. Mitochondrial damage and oxidative stress have been greatly implicated in the progression of aging, along with the pathogenesis of age-related neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Although antioxidant therapy has been proposed for the prevention and treatment of age-related NDs, unraveling the molecular mechanisms of mitochondrial dysfunct...
Source: Life Sciences - Category: Biology Source Type: research
Publication date: Available online 5 November 2018Source: MitochondrionAuthor(s): Komal Panchal, Anand Krishna TiwariAbstractNeurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and f...
Source: Mitochondrion - Category: Biochemistry Source Type: research
More News: ALS | Alzheimer's | Brain | Cytology | Huntington's Disease | Mitochondrial Disease | Neurology | Parkinson's Disease