Digital gene expression analysis in the liver of ScpB-vaccinated and Streptococcus agalactiae-challenged Nile tilapia

Publication date: November 2019Source: Fish & Shellfish Immunology, Volume 94Author(s): Xiao-li Ke, De-feng Zhang, Qing-yong Li, Zhi-gang Liu, Feng-ying Gao, Mai-xin Lu, Hong YangAbstractIn recent years, streptococcal diseases have severely threatened the development of tilapia aquaculture, but effective prevention and control methods have not yet been established. To understand the immune responses of vaccinated Nile tilapia (Oreochromis niloticus), digital gene expression (DGE) technology was applied in this study to detect the gene expression profile of the Nile tilapia (O. niloticus) liver in response to ScpB (Streptococcal C5a peptidase from group B Streptococcus, ScpB) vaccination and a Streptococcus agalactiae-challenge. The control and the ScpB-vaccinated Nile tilapia yielded a total of 25,788,734 and 27,088,598 clean reads, respectively. A total of 1234 significant differentially expressed unigenes were detected (P < 0.05), of which 236 were significantly up-regulated, and 269 were significantly down-regulated (P < 0.05, |fold|>2, FDR<0.05). Of the differentially expressed gene, the identified genes which were enriched using databases of GO and KEGG could be categorized into a total of 67 functional groups and were mapped to 153 signaling pathways including 15 immune-related pathways. The differentially expressed genes (TLR1, TLR2, TLR3, TLR5, TLR9, MyD88, C3, IL-1β, IL-10) were detected in the expression profiles, and this was subsequently verif...
Source: Fish and Shellfish Immunology - Category: Biology Source Type: research