Dent disease: A window into calcium and phosphate transport.

Dent disease: A window into calcium and phosphate transport. J Cell Mol Med. 2019 Aug 31;: Authors: Anglani F, Gianesello L, Beara-Lasic L, Lieske J Abstract This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investi...
Source: J Cell Mol Med - Category: Molecular Biology Authors: Tags: J Cell Mol Med Source Type: research