MicroRNA-25-5p counteracts oxidized LDL-induced pathological changes by targeting neuronal growth regulator 1 (NEGR1) in human brain micro-vessel endothelial cells.

MicroRNA-25-5p counteracts oxidized LDL-induced pathological changes by targeting neuronal growth regulator 1 (NEGR1) in human brain micro-vessel endothelial cells. Biochimie. 2019 Jul 28;: Authors: Zhang Q, Liu C, Li Q, Li J, Wu Y, Liu J Abstract MicroRNA-25-5p (miR-25-5p) may be involved in the pathogenesis and processes of vascular diseases. The aim of this study was to investigate the role of miR-25-5p in oxidized low-density lipoprotein (ox-LDL)-treated human brain microvessel endothelial cells (HBMECs) and the underlying mechanisms. RT-qPCR and/or western blot were used to detect the expression levels of miR-25-5p and neuronal growth regulator 1 (NEGR1). The effect of miR-25-5p overexpression and NEGR1 silencing on cell proliferation, migration, apoptosis and reactive oxygen species (ROS) production of HBMECs were measured by using CCK-8 assay, transwell assay and flow cytometry, respectively. The expression levels of apoptosis-related protein (cleaved caspase-3 and pro-caspase-3) were detected using western blot, and the nitric oxide (NO) production was measured by a nitric oxide assay kit. The expression level of miR-25-5p was decreased in HBMECs treated with ox-LDL. Compared with the control group, miR-25-5p overexpression significantly promoted the proliferation and migration of HBMECs treated with ox-LDL (p<0.01). Overexpression of miR-25-5p significantly suppressed cell apoptosis, ROS production and NO reduction of ox-...
Source: Biochimie - Category: Biochemistry Authors: Tags: Biochimie Source Type: research