LCN2-interacting proteins and their expression patterns in brain tumors.

In this study, we aimed to explore LCN2 interacting proteins through bioinformatics, as well as their biological functions. Protein-protein interaction networks (PPIN) were constructed using LCN2 and its interacting proteins as the core node. These PPINs were scale free biological networks in which LCN2 and its interacting proteins could connect or cross-talk with at least one partner protein. Both functional and KEGG pathway enrichment analyses identified the known and potential biological functions of the PPIN, such as cell migration and cancer-related pathways. Expression levels of the PPIN proteins, as well as their expression correlations, in five types of brain tumor, were analyzed and integrated into the PPIN to illustrate a dynamic change. A significant correlation was found between the survival time of glioblastoma patients and the expression level of 10 genes (LCN2, MMP9, MMP2, PDE4DIP, L2HGDH, HNRNPA1, DDX31, LOXL2, FAM60A and RNF25). Taken together, our results suggest that LCN2 and its interacting proteins are mostly differentially expressed and have a distinguishing co-expression pattern. They might promote proliferation and migration via cell migration signaling and cancer-related pathways. LCN2 and its interacting proteins might be potential biomarkers in glioblastoma. PMID: 31233712 [PubMed - as supplied by publisher]
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research