Curcumin in Advancing Treatment for Gynecological Cancers with Developed Drug- and Radiotherapy-Associated Resistance.

Curcumin in Advancing Treatment for Gynecological Cancers with Developed Drug- and Radiotherapy-Associated Resistance. Rev Physiol Biochem Pharmacol. 2019;176:107-129 Authors: Momtazi-Borojeni AA, Mosafer J, Nikfar B, Ekhlasi-Hundrieser M, Chaichian S, Mehdizadehkashi A, Vaezi A Abstract The development of resistance toward current cancer therapy modalities is an ongoing challenge in gynecological cancers, especially ovarian and cervical malignancies that require further investigations in the context of drug- and irradiation-induced resistance. In this regard, curcumin has demonstrated beneficial and highly pleiotropic actions and increased the therapeutic efficiency of radiochemotherapy. The antiproliferative, anti-metastatic, anti-angiogenic, and anti-inflammatory effects of curcumin have been extensively reported in the literature, and it could also act as a chemopreventive agent which mitigates the out-of-target harmful impact of chemotherapeutics on surrounding normal tissues. The current review discussed the modulating influences of curcumin on some cell and molecular features, including the cell signaling and molecular pathways altered upon curcumin treatment, the expression of target genes involved in the progression of gynecological cancers, as well as the expression of genes accountable for the development of resistance toward common chemotherapeutics and radiotherapy. The cell molecular targets implicated in curcumin's resensitizing effect, wh...
Source: Pharmacological Reviews - Category: Drugs & Pharmacology Authors: Tags: Rev Physiol Biochem Pharmacol Source Type: research

Related Links:

Conclusion MTDH is pro-oncogenic factor playing multifaceted and diverse roles in cancer progression. Its association and central role in regulating signaling pathways such a MAPK, wnt/β-catenin, PI3K/AkT, NF-κβ pathways in various cancers shows that it plays a vital role in metastasis. MTDH contribution to chemo and radiotherapy resistance provides a new direction for the development of anticancer therapeutics. Multiple mechanisms converge to promote expression of MTDH in cancers. Further studies are therefore warranted to determine whether the elevated MTDH expression has prognostic value for development...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusion and Future Perspectives This review illustrates our current knowledge of USP7, including its source and characterization, structure, binding partners and substrates in various biological processes. Besides, how USP7 regulates various aspects of a cell under both normal and pathological states are elaborated in detail. As the processes of ubiquitination and deubiquitination are extremely dynamic and context-specific, a series of studies have linked USP7 to different cancers. The biology, particularly the immune oncology mechanisms, reveal that USP7 inhibitors would be useful drugs, thus it is vital to develop hi...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Yi-Cheng Gao, Xiong-Hui Zhou* and Wen Zhang* Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China Due to the high heterogeneity and complexity of cancer, it is still a challenge to predict the prognosis of cancer patients. In this work, we used a clustering algorithm to divide patients into different subtypes in order to reduce the heterogeneity of the cancer patients in each subtype. Based on the hypothesis that the gene co-expression network may reveal relationships among genes, some communities in the network could influence the prognosis o...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
Markus Hartl* and Rainer Schneider Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulate...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
This study highlights how the use of in vitro 3D model can allow rapid screening and selection of new and safer drugs. Introduction Angiogenesis is a complex and finely regulated process that consists of the growth of new capillary blood vessels from pre-existing vessels to create communication pathways among tissues. The coordination of different activities such as endothelial cell proliferation and migration, metalloproteinase function, integrin expression and pericyte stabilization is essential for angiogenesis (Folkman, 1984). The “angiogenic switch” is “on” when the balance between pro-...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
This study was supported by the Shanghai Sailing Program [grant number 17YF1425200, 2017]; Chinese National Natural Science Funding [grant number 81702249, 2017]; Science and Technology Commission of Shanghai Municipality [grant number 17511103403, 2017]; The funder has no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Conflict of Interest Statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Acknowledgments We acknowledge the ex...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Yi He†, Wenyong Long† and Qing Liu* Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China Super-enhancers (SEs) refer to large clusters of enhancers that drive gene expressions. Recent data has provided novel insights in elucidating the roles of SEs in many diseases, including cancer. Many mechanisms involved in tumorigenesis and progression, ranging from internal gene mutation and rearrangement to external damage and inducement, have been demonstrated to be highly associated with SEs. Moreover, translocation, formation, deletion, or duplication of SEs themselves co...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Discussion Suppressor of cytokine signaling 1 is an essential molecule for maintaining immune homeostasis and subverting inflammation. Disorders arising from excess inflammation or SOCS1 deficiency can be potentially treated with SOCS1 mimetics (Ahmed et al., 2015). While SOCS1 has promising potential in many disorders, it should be noted that new targets and actions of SOCS1 are still being discovered and not all the effects of this protein are beneficial in autoimmune diseases and cancer. For instance, SOCS1 degrades IRS1 and IRS2, required for insulin signaling, via the SOCS Box domain, thus, limiting its potential in ...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
In conclusion, osmotic burst of inflated complement-damaged cells may occur, but these bursts are most likely a consequence of metabolic collapse of the cell rather than the cause of cell death. The Complement Cell Death Mediator: A Concerted Action of Toxic Moieties Membrane pores caused by complement were first visualized by electron microscopy on red blood cell membranes as large ring structures (22). Similar lesions were viewed on E. coli cell walls (23). Over the years, ample information on the fine ultrastructure of the MAC that can activate cell death has been gathered (24) and has been recently further examined (...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
We examined the following three conditions: DMEM high glucose which contained 4.5 mg/ml glucose, independent of serum, DMEM low glucose which contained 1.0 mg/ml glucose, independent of serum. And, DMEM no glucose which contained 0.0 mg/ml glucose, independent of serum. DMEM is referred to as glucose “free,” however some glucose was actually present due to the FBS. The glucose concentration in the FBS used was 1.04 mg/ml. We calculate 0.0937 mg/ml glucose was present in the media under all conditions due to the addition of serum. Quantification of ROS Levels ROS are widely evaluated in tissue culture using di...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
More News: Cancer | Cancer & Oncology | Cancer Therapy | Cervical Cancer | Drugs & Pharmacology | Genetics | Nanotechnology | Ovarian Cancer | Ovaries | Turmeric